REVISED PROFORMA FOR ACTION PLAN 2020 ## 1. Name of the KVK: BURDWAN | Address | Telephone | | E mail | |---------------------------|--------------|-------|---------------------------| | Bud Bud, Burdwan-713 403. | Office - | Fax - | kvkburdwan@gmail.com | | West Bengal | 0343 2513651 | | Web: www.kvkcrijaf.org.in | ## 2. Name of host organization: | Address | Telephone | | E mail | |---|-----------------|----------|-----------------------------| | | Office | FAX | | | ICAR-Central Research Institute for Jute and Allied | 033-25356124-25 | 033- | director.crijaf@icar.gov.in | | Fibres, | | 25350415 | crijaf-wb@nic.in | | Nilgunj, Barrackpore | | | | | Kolkata- 700 120. West Bengal | | | | # 3. Training programme to be organized (January 2020 to December 2020) ## (a) Farmers and farmwomen | Thematic | Title of | No. | Duration | Venue | Tentative | | | No | of F | Partic | ipan | ts | | | |--|--|-----|----------|--------|--------------------------|----|----|----|------|--------|------|----|------|----| | area | Training | | | On/Off | Date | S | C | S' | T | Ot | her | , | Tota | l | | | | | | | | M | F | M | F | M | F | M | F | T | | I Crop
Production | | | | | | | | | | | | | | | | Production technology | Improved production technology off jute | 2 | 1 | Off | April, 2020 | 12 | 0 | 0 | 0 | 38 | 20 | 50 | 20 | 70 | | Resource
Conservation
Technologies | Rice
cultivation
through SRI | 2 | 1 | Off | Jan., and
June., 2020 | 10 | 0 | 0 | 0 | 60 | 10 | 70 | 10 | 80 | | Conservation agriculture | Sustainable crop production through conservation agriculture | 1 | 1 | Off | Jan., 2020 | 0 | 0 | 0 | 0 | 20 | 10 | 20 | 10 | 30 | | Production
technology | Improved production technology of mustard (FLD training) | 2 | 1 | Off | Oct., 2020 | 20 | 10 | 0 | 0 | 50 | 10 | 70 | 20 | 90 | | Production technology | Improved production technology of pulses (FLD training) | 2 | 1 | Off | Nov., 2020 | 12 | 12 | 0 | 0 | 56 | 0 | 68 | 12 | 80 | | Production technology | Improved production technology of groundnut (FLD training) | 2 | 1 | Off | Jan., 2020 | 15 | 0 | 0 | 0 | 60 | 05 | 75 | 5 | 80 | |---|--|-------|------|---------------|--------------------------------------|----|---|----|---|----|----|----|---|----| | III. Soil Healtl | n and Fertility M | anage | ment | 1 | ! | | l | ı | I | | I | I | I | | | Soil fertility
management | Role of
nutrient vis-
à-vis crop
production | 2 | 1 | Off and
On | May, 2020 | 20 | 0 | 0 | 0 | 40 | 0 | 60 | 0 | 60 | | Integrated
Nutrient
Management | Benefits of
INM in field
crops | 1 | 1 | Off | May, 2020 | 10 | 0 | 0 | 0 | 20 | 0 | 30 | 0 | 30 | | Production
and use of
organic
inputs | Need for composting and different types of compost preparation | 2 | 1 | Off and
On | June., 2020 | 20 | 0 | 0 | 0 | 40 | 0 | 60 | 0 | 60 | | Micro
nutrient
deficiency in
crops | Role of micronutrient in soil and crop health | 1 | 1 | On | Feb., 2020
Dec., 2020 | 10 | 0 | 0 | 0 | 20 | 0 | 30 | 0 | 30 | | Soil
management | Management
of problem
soil and ways
of | 1 | 1 | Off | July., 2020 | 0 | 0 | 0 | 0 | 25 | 5 | 25 | 5 | 30 | | II. Horticultu | amelioration
re | | | | | | | | | | | | | | | Vegetable cultivation | Cultivation
techniques of
solanaceous
vegetable | 3 | 1 | On | 17.10.20,
20.10. 20,
20.11. 20 | 10 | 0 | 10 | 0 | 70 | 0 | 90 | 0 | 90 | | Orchards
development | Layout and
Management
of Orchards | 1 | 1 | Off | 01.06. 20 | 5 | 0 | 5 | 0 | 20 | 0 | 30 | 0 | 30 | | | Micro
irrigation
systems of
orchards | 1 | 1 | On | 16.08. 20 | 5 | 0 | 5 | 0 | 20 | 0 | 30 | 0 | 30 | | Cultivation of Fruit | Improved cultivation of tissue culture banana | 1 | 1 | Off | 08.06. 20 | 3 | 0 | 2 | 0 | 20 | 5 | 25 | 5 | 30 | | Plant
propagation
techniques | Plant
propagation
techniques of
sub-tropical
fruit crops | 1 | 1 | On | 06.07. 20 | 3 | 0 | 2 | 0 | 20 | 5 | 25 | 5 | 30 | | Production
and
Management
technology | Improved production technology of potato | 1 | 1 | Off | 10.09. 20 | 3 | 0 | 2 | 0 | 20 | 5 | 25 | 5 | 30 | | Production
and
Management
technology | Improved production technology of kharif onion | 1 | 1 | Off | 19.06. 20 | 3 | 0 | 2 | 0 | 20 | 5 | 25 | 5 | 30 | |---|--|---|---|-----|---------------------------|----|----|---|---|----|----|----|----|----| | Crop
protection | Disease
management in
Tomato | 1 | 1 | Off | 11.02.2020 | 20 | 10 | 0 | 0 | 0 | 0 | 20 | 10 | 30 | | Crop
protection | Disease
management in
Cucurbits | 1 | 1 | Off | 19.02.2020 | 20 | 10 | 0 | 0 | 0 | 0 | 20 | 10 | 30 | | Crop
protection | Integrated Pest
Management | 1 | 1 | On | 24.06.2020 | 6 | 2 | 0 | 0 | 14 | 8 | 20 | 10 | 30 | | Crop
protection | Disease
Management
in Rice | 1 | 1 | On | 07.07.2020 | 6 | 2 | 0 | 0 | 12 | 10 | 18 | 12 | 30 | | Crop
protection | Disease
Management
in Rice | 1 | 1 | Off | 22.07.2020 | 6 | 2 | 0 | 0 | 12 | 10 | 18 | 12 | 30 | | Crop protection | Disease
management in
Brinjal | 1 | 1 | Off | 08.10.2020 | 4 | 2 | 2 | 2 | 12 | 8 | 18 | 12 | 30 | | Crop protection | Disease
management in
Mustard | 1 | 1 | Off | 26.11.2020 | 6 | 2 | 4 | 4 | 10 | 4 | 20 | 10 | 30 | | Crop
protection | Disease
management in
Cole crops | 1 | 1 | Off | 04.12.2020 | 10 | 0 | 0 | 0 | 20 | 0 | 20 | 10 | 30 | | Integrated pest management | Integrated pest management in aman paddy | 2 | 1 | on | 16.07.2020,
25.08.2020 | 30 | 30 | | | | | 30 | 30 | 60 | | | Integrated pest management in aman paddy | 2 | 1 | off | 21.07.2020
20.08.2020 | 30 | 30 | | | | | 30 | 30 | 60 | | | Integrated pest management in boro paddy | 1 | 1 | on | 25.03.2020 | 15 | 15 | | | | | 15 | 15 | 30 | | | Integrated pest | 1 | 1 | off | 01.04.2020 | 15 | 15 | | | | | 15 | 15 | 30 | | | management
in boro
paddy | | | | | | | | | | | |--------------------------------|---|---|---|-----|--------------------------|----|----|--|----|----|----| | Pest
management
in crops | Insect pest
management
in mustard | 1 | 1 | Off | 10.11.2020 | 15 | 15 | | 15 | 15 | 30 | | | Insect pest
management
in brinjal | 2 | 1 | On | 20.05.2020 14.10.2020 | 30 | 30 | | 30 | 30 | 60 | | | Insect pest management in tomato | 2 | 1 | Off | 20.10.2020
28.10.2020 | 30 | 30 | | 30 | 30 | 60 | | | Insect pest management in cucurbits | 1 | 1 | On | 14.09.2020 | 15 | 15 | | 15 | 15 | 30 | # (b) Rural youths | Thematic | Title of | No. | Duration | Venue | Tentative | | | No | 0. 0 | f Par | ticip | ants | | | |---|---|-----|---------------------|--------|----------------------------------|-----|----|----|------|-------|-------|------|------|-----| | area | Training | | | On/Off | Date | SO | C | S | Γ | Ot | her | | Tota | ıl | | | | | | | | M | F | M | F | M | F | M | F | T | | Production
and use of
organic
inputs | Vermicompost
production at
farmers level | 2 | 1 | On | Feb., 2020 | 20 | 0 | 0 | 0 | 40 | 0 | 60 | 0 | 60 | | Seed production | Seed
production of
different field
crops | 2 | 1 | Off | July., 2020 | 20 | 0 | 0 | 0 | 40 | 0 | 60 | 0 | 60 | | Production of bio control agents and bio pesticides | Preparation of organic pesticides and its application | 1 | 1 | Off | 02.11. 20 | 3 | 0 | 2 | 0 | 20 | 5 | 25 | 5 | 30 | | Post
harvest
technology | Post harvest
technology of
horticultural
crops | 1 | 1 | Off | 21.02.20 | 3 | 0 | 2 | 0 | 20 | 5 | 25 | 5 | 30 | | Mushroom
Production | Improved
Production
Technology of | 6 | (3courses each of 2 | On | (04.02.2020
-
05.02.2020), | 120 | 60 | 0 | 0 | 0 | 0 | 120 | 60 | 180 | | | Oyster
mushroom | | days
duration) | | (11.02.2020
-
12.02.2020),
(17.02.2020
-
18.02.2020), | | | | | | | | | | |-----------------|---|---|---|----|---|----|----|---|---|----|----|----|----|-----| | | | 4 | (2courses
each of 2
days
duration) | On | (18.11.2020
-
19.11.2020)
and
(02.12.2020
-
03.12.2020) | 16 | 16 | 8 | 0 | 48 | 32 | 72 | 48 | 120 | | Bee-
keeping | Bee-keeping
for better
pollination
and alternative
livelihood | 4 | (2
courses
each of 2
days
duration) | On | (26.11.2020
-
27.11.2020)
and
(16.12.2020
-
17.12.2020) | 16 | 16 | 8 | 8 | 48 | 24 | 72 | 48 | 120 | # (c) Extension functionaries | Thrust area/ | Title of
Training | No. | Duration | Venue | Tentative | | | | No. o | of Pa | rticij | pants | | | |-------------------------|--|-----|----------|--------|--------------------------------|----|----|----|-------|-------|--------|-------|------|----| | Thematic | Training | | | On/Off | Date | S | C | S | T | Ot | her | | Tota | l | | area | | | | | | M | F | M | F | M | F | M | F | Т | | Others | Climate change and effect on agriculture | 2 | 1 | On | Dec., 2020
August.,
2020 | 10 | 10 | 0 | 0 | 40 | 0 | 60 | 0 | 60 | | Seed production | Seed production of Vegetable crops | 2 | 1 | On | 01.02.20 | 10 | 0 | 5 | 0 | 45 | 0 | 60 | 0 | 60 | | Post harvest technology | Scientific ripening techniques of fruits | 1 | 1 | On | 08.02.20 | 0 | 0 | 10 | 0 | 20 | 0 | 30 | 0 | 30 | # (d) Vocational training | Thrust area/ Thematic | Title of | No.
| Duration | Venue | Tentative | | | No. | I F M F M F | | | | | | |-----------------------|---------------|-----|----------|--------|-----------|---|----|-----|-------------|-----|-----|---|------|----| | area | Training | | | On/Off | Date | S | C | S | Γ | Oth | ıer | | Tota | l | | | | | | | | M | F | M | F | M | F | M | F | T | | Rural Crafts | Kantha stitch | 1 | 7 | on | 03.02.20 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 20 | 25 | ### (e) ASCI Skill Development Training | Thrust area/ | Title of Training | No. | Duration | Venue | Tentative | | | No. ST F M 0 2 | | Parti | cipa | ants | | | |---------------|------------------------|-----|----------|--------|-----------|-------|---|--------------------------|---|-------|------|------|------|----| | Thematic area | | | | On/Off | Date | M F M | | S | Γ | Otl | ıer |] | Γota | ıl | | | | | | | | M | F | M | F | M | F | M | F | T | | Nursery | Nursery management | 1 | 30 | On | 01.11.20- | 4 | 0 | 2 | 0 | 14 | 0 | 20 | 0 | 20 | | management | in horticultural crops | | | | 05.12.20 | | | | | | | | | | # Abstract of Training: Consolidated table (ON and OFF Campus) ## Farmers and Farm women | Thematic Area | No. of | | | No | of Pa | articipa | nts | | | | Gran | d Total | | |--|--------|-----|-------|-----|-------|----------|-----|---|----|---|------|---------|---------| | | Course | | Other | | | SC | | | ST | | | | | | | s | M | F | T | M | F | T | M | F | T | M | F | T | | I. Crop Production | | | | | | | | | | | | | | | Weed Management | | | | | | | | | | | | | | | Resource Conservation Technologies | 3 | 80 | 20 | 100 | 10 | 0 | 10 | 0 | 0 | 0 | 90 | 20 | 11
0 | | Cropping Systems | 2 | 204 | 35 | 239 | 59 | 22 | 81 | 0 | 0 | 0 | 263 | 57 | 32
0 | | Crop Diversification | | | | | | | | | | | | | | | Integrated Farming | | | | | | | | | | | | | | | Water management | | | | | | | | | | | | | | | Seed production | | | | | | | | | | | | | | | Nursery management | | | | | | | | | | | | | | | Integrated Crop Management | | | | | | | | | | | | | | | Fodder production | | | | | | | | | | | | | | | Production of organic inputs | | | | | | | | | | | | | | | Others, (cultivation of crops) | | | | | | | | | | | | | | | TOTAL | 5 | 284 | 55 | 339 | 69 | 22 | 91 | 0 | 0 | 0 | 353 | 77 | 43
0 | | II. Horticulture | | | | | | | | | | | | | | | a) Vegetable Crops | | | | | | | | | | | | | | | Integrated nutrient management | | | | | | | | | | | | | 1 | | Water management | | | | | | | | | | | | | 1 | | Enterprise development | | | | | | | | | | | | | 1 | | Skill development | | | | | | | | | | | | | † | | Yield increment | | | | | | | | | | | | | | | Production of low volume and high value | | | | | | | | | | | | | | | crops | | | | | | | | | | | | | | | Off-season vegetables | | | | | | | | | | | | | | | Nursery raising | | | | | | | | | | | | | | | Exotic vegetables like Broccoli | | | | | | | | | | | | | | | Export potential vegetables | | | | | | | | | | | | | | | Grading and standardization | | | | | | | | | | | | | | | Protective cultivation (Green Houses,
Shade Net etc.) | | | | | | | | | | | | | | | Thematic Area | No. of | | | No | o of Pa | rticipa | nts | | | | Grand | d Total | | |---|--------|-----|-------|-----|---------|---------|-----|----|----|----|-------|---------|---------| | | Course | | Other | | | SC | | | ST | | | | | | | s | M | F | T | M | F | T | M | F | T | M | F | T | | Others, if any (Cultivation of Vegetable) | 5 | 110 | 10 | 120 | 16 | 0 | 16 | 14 | 0 | 14 | 140 | 10 | 15
0 | | TOTAL | 5 | 110 | 10 | 120 | 16 | 0 | 16 | 14 | 0 | 14 | 140 | 10 | 15
0 | | b) Fruits | | | | | | | | | | | | | | | Training and Pruning | | | | | | | | | | | | | | | Layout and Management of Orchards | 1 | 20 | 0 | 20 | 5 | 0 | 5 | 5 | 0 | 5 | 30 | 0 | 30 | | Cultivation of Fruit | 1 | 20 | 5 | 25 | 3 | 0 | 3 | 2 | 0 | 2 | 25 | 5 | 30 | | Management of young plants/orchards | | | | | | | | | | | | | | | Rejuvenation of old orchards | | | | | | | | | | | | | | | Export potential fruits | | | | | | | | | | | | | | | Micro irrigation systems of orchards | 1 | 20 | 0 | 20 | 5 | 0 | 5 | 5 | 0 | 5 | 30 | 0 | 30 | | Plant propagation techniques | 1 | 20 | 5 | 25 | 3 | 0 | 3 | 2 | 0 | 2 | 25 | 5 | 30 | | Others, if any(INM) | | | | | | | | | | | | | | | TOTAL | 4 | 80 | 10 | 90 | 16 | 0 | 16 | 14 | 0 | 14 | 110 | 10 | 12
0 | | c) Ornamental Plants | | | | | | | | | | | | | | | Nursery Management | | | | | | | | | | | | | | | Management of potted plants | | | | | | | | | | | | | | | Export potential of ornamental plants | | | | | | | | | | | | | | | Propagation techniques of Ornamental | | | | | | | | | | | | | | | Plants | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | d) Plantation crops | | | | | | | | | | | | | | | Production and Management technology | | | | | | | | | | | | | | | Processing and value addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | e) Tuber crops | | | | | | | | | | | | | | | Production and Management technology | | | | | | | | | | | | | | | Processing and value addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | f) Spices | | | | | | | | | | | | | | | Production and Management technology | | | | | | | | | | | | | | | Processing and value addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | İ | | | | | | g) Medicinal and Aromatic Plants | | | | | | | | | İ | | | | | | Nursery management | | | | | | | | | | | | | | | Production and management technology | | | | | | | | | | | | | | | Thematic Area | No. of | | | No | o of Pa | articipa | nts | | | | Gran | d Total | | |---------------------------------------|--------|-----|-------|-----|--|----------|-----|---|----|---|------|---------|----| | | Course | | Other | | | SC | | | ST | | | | | | | S | M | F | T | M | F | T | M | F | T | M | F | T | | Post harvest technology and value | | | | | | | | | | | | | | | addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | III. Soil Health and Fertility | | | | | | | | | | | | | | | Management | | | | | | | | | | | | | | | Soil fertility management | 2 | 60 | 0 | 60 | 20 | 0 | 20 | 0 | 0 | 0 | 80 | 0 | 80 | | Soil and Water Conservation | | | | | | | | | | | | | | | Integrated Nutrient Management | 1 | 20 | 0 | 20 | 10 | 0 | 10 | 0 | 0 | 0 | 30 | 0 | 30 | | Production and use of organic inputs | 2 | 40 | 0 | 40 | 20 | 0 | 20 | 0 | 0 | 0 | 60 | 0 | 60 | | Management of Problematic soils | 1 | 25 | 5 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 5 | 30 | | Micro nutrient deficiency in crops | 1 | 20 | 0 | 20 | 10 | 0 | 10 | 0 | 0 | 0 | 30 | 0 | 30 | | Nutrient Use Efficiency | | | | | | | | | | | | | | | Soil and Water Testing | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | 7 | 165 | 5 | 170 | 60 | 0 | 60 | 0 | 0 | 0 | 225 | 5 | 23 | | IV. Livestock Production and | | | | | | | | | | | | | | | Management | | | | | | | | | | | | | | | Dairy Management | | | | | | | | | | | | | | | Poultry Management | | | | | | | | | | | | | | | Piggery Management | | | | | | | | | | | | | | | Rabbit Management | | | | | | | | | | | | | | | Disease Management | | | | | | | | | | | | | | | Feed management | | | | | | | | | | | | | | | Production of quality animal products | | | | | | | | | | | | | | | Others, if any (Goat farming) | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | V. Home Science/Women empowerment | | | | | | | | | | | | | | | Household food security by kitchen | | | | | | | | | | | | | | | gardening and nutrition gardening | | | | | | | | | | | | | | | Design and development of low/minimum | | | | | | | | | | | | | | | cost diet | | | | | | | | | | | | | | | Designing and development for high | | | | | | | | | | | | | | | nutrient efficiency diet | | | | | | | | | | | | | | | Minimization of nutrient loss in | | | | | | | | - | | | | | | | processing | | | | | | | | | | | | | | | Gender mainstreaming through SHGs | Storage loss minimization techniques | | | | | | | | | | | | | | | Thematic Area | No. of | | | No | . of Pa | articipa | nts | | | | Gran | d Total | | |---|--------|----|-------|-----|---------|----------|------|----|----|-----|------|---------|----| | | Course | | Other | | | SC | | | ST | | | | | | | S | M | F | T | M | F | T | M | F | T | M | F | T | | Enterprise development | | | | | | | | | | | | | | | Value addition | | | | | | | | | | | | | | | Income generation activities for | | | | | | | | | | | | | | | empowerment of rural Women | | | | | | | | | | | | | | | Location specific drudgery reduction | | | | | | | | | | | | | | | technologies | 1 | | | | | | | | | | | | | | Rural Crafts | | | | | | | | | | | | | | | Capacity building | | | | | | | | | | | | | | | Women and child care | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | VI.Agril. Engineering | | | | | | | | | | | | | | | Installation and maintenance of micro | | | | | | | | | | | | | | | irrigation systems | | | | | | | | | | | | | | | Use of Plastics in farming practices | | | | | | | | | | | | | | | Production of small tools and implements | | | | | | | | | | | | | | | Repair and maintenance of farm | | | | | | | | | | | | | | | machinery and implements | | | | | | | | | | | | | | | Small scale processing and value addition | | | | | | | | | | | | | | | Post Harvest Technology | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | VII. Plant
Protection | | | | | | | | | | | | | | | Integrated Pest Management | | | | | | | | | | | | | 21 | | | 7 | 14 | 8 | 22 | 90 | 90 | 180 | 6 | 2 | 8 | 110 | 100 | 0 | | Integrated Disease Management | + + | | | | | | | | | | | | 21 | | | 7 | 66 | 32 | 98 | 66 | 26 | 92 | 12 | 8 | 20 | 144 | 66 | 0 | | Bio-control of pests and diseases | | | | | | | | | | | | | | | Production of bio control agents and bio | + | | | | | | | | | | | | | | pesticides | | | | | | | | | | | | | | | Others, if any | † | | | | | | 4.5- | _ | _ | _ | | | 18 | | • | 6 | 0 | 0 | 0 | 90 | 90 | 180 | 0 | 0 | 0 | 90 | 90 | 0 | | TOTAL | 1 22 | | | | 24 | | | | | 2.5 | | | 60 | | | 20 | 80 | 40 | 120 | 6 | 206 | 452 | 18 | 10 | 28 | 344 | 256 | 0 | | VIII. Fisheries | + + | | | | | | | | | | | | | | Integrated fish farming | | | | | | | | | | | | | | | Carp breeding and hatchery management | 1 | | | | | | | | | | | | | | Carp fry and fingerling rearing | 1 | | | | | | | | | | | | | | Composite fish culture & fish disease | 1 | | | | | | | | | | | | | | Fish feed preparation & its application to | 1 | | | | | | | | | | | | | | fish pond, like nursery, rearing & stocking | | | | | | | | | | | | | | | Thematic Area | No. of | | | No | . of Pa | ırticipa | nts | | | | Gran | d Total | | |---|--------|-----|-------|-----|---------|----------|-----|----|----|----|------|---------|----| | | Course | | Other | 1 | | SC | 1 | | ST | | | ı | 1 | | | S | M | F | T | M | F | T | M | F | T | M | F | T | | pond | | | | | | | | | | | | | | | Hatchery management and culture of | | | | | | | | | | | | | | | freshwater prawn | | | | | | | | | | | | | | | Breeding and culture of ornamental fishes | | | | | | | | | | | | | | | Portable plastic carp hatchery | | | | | | | | | | | | | | | Pen culture of fish and prawn | | | | | | | | | | | | | | | Shrimp farming | | | | | | | | | | | | | | | Edible oyster farming | | | | | | | | | | | | | | | Pearl culture | | | | | | | | | | | | | | | Fish processing and value addition | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | IX. Production of Inputs at site | | | | | | | | | | | | | | | Seed Production | | | | | | | | | | | | | | | Planting material production | | | + | | | | | | | | | | | | Bio-agents production | | | 1 | | | | | | | | | | | | Bio-pesticides production | | | | | | | | | | | | | | | Bio-fertilizer production | | | | | | | | | | | | | | | Vermi-compost production | | | | | | | | | | | | | | | Organic manures production | | | + | - | | | - | | | | | | | | Production of fry and fingerlings | | | | | | | | | | | | | | | Production of Bee-colonies and wax | sheets | | | 1 | | | | | | | | - | | | | Small tools and implements Production of livestock feed and fodder | Production of Fish feed | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | X. Capacity Building and Group | | | | | | | | | | | | | | | Dynamics | | | | | | | | | | | | | | | Leadership development | | | | | | | | | | | | | | | Group dynamics | | | | | | | | | | | | | | | Formation and Management of SHGs | | | | | | | | | | | | | | | Mobilization of social capital | | | | | | | | | | | | | | | Entrepreneurial development of | | | | | | | | | | | | | | | farmers/youths | | | | | | | | | | | | | | | WTO and IPR issues | | | | | | | | | | | | | | | Others, if any | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | | | | | | XI Agro-forestry | | | | | | | | | | | | | | | Production technologies | | | 1 | | | | | | | | | | | | Nursery management | | | 1 | | | | | | | | | | | | Integrated Farming Systems | | | 1 | | | | | | | | | | | | TOTAL | | | 1 | | | | | | | | | | | | XII. Others (Pl. Specify) | | | † | | | | | | | | | | | | TOTAL | | | | | 40 | | | | | | 117 | | 15 | | | 41 | 719 | 120 | 839 | 7 | 228 | 635 | 46 | 10 | 56 | 2 | 358 | 30 | # **Rural youth** | Thematic Area | No. of | | | | No. of | f Partic | ipants | | | | Grand | Total | | |---|---------|----------|-------|----|--------|----------|--------|---|----|----|-------|-------|-----| | | Courses | | Other | • | | SC | - | | ST | | | | | | | | M | F | T | M | F | T | M | F | T | M | F | T | | Mushroom Production | 10 | 48 | 32 | 80 | 136 | 76 | 212 | 8 | 0 | 8 | 192 | 108 | 300 | | Bee-keeping | 4 | 48 | 24 | 72 | 16 | 16 | 32 | 8 | 8 | 16 | 72 | 48 | 120 | | Integrated farming | | | | | | | | | | | | | | | Seed production | 2 | 40 | 0 | 40 | 20 | 0 | 20 | 0 | 0 | 0 | 60 | 0 | 60 | | Production of organic inputs | 3 | 60 | 5 | 65 | 23 | 0 | 23 | 2 | 0 | 2 | 85 | 5 | 90 | | Planting material production | | | | | | | | | | | | | | | Vermi-culture | | | | | | | | | | | | | | | Sericulture | | | | | | | | | | | | | | | Protected cultivation of vegetable crops | | | | | | | | | | | | | | | Commercial fruit production | | | | | | | | | | | | | | | Repair and maintenance
of farm machinery and
implements | | | | | | | | | | | | | | | Nursery Management of
Horticulture crops | 1 | 14 | 0 | 14 | 4 | 0 | 4 | 2 | 0 | 2 | 20 | 0 | 20 | | Training and pruning of orchards | | | | | | | | | | | | | | | Value addition | | | | | | | | | | | | | | | Production of quality animal products | | | | | | | | | | | | | | | Dairying | | | | | | | | | | | | | | | Sheep and goat rearing | | | | | | | | | | | | | | | Quail farming | | | | | | | | | | | | | | | Piggery | | | | | | | | | | | | | | | Rabbit farming | | | | | | | | | | | | | | | Poultry production | | | | | | | | | | | | | | | Ornamental fisheries | | | | | | | | | | | | | | | Para vets | | | | | | | | | | | | | | | Para extension workers | | | | | | | | | | | | | | | Composite fish culture | | | | | | | | | | | | | | | Freshwater prawn | | | | | | | | | | | | | | | culture | | 1 | | | | | | | | | | | | | Shrimp farming | | <u> </u> | | | | | | | | | | | | | Pearl culture | | | | | | | | | | | | | | | Cold water fisheries | | <u> </u> | | | | | | | | | | | | | Fish harvest and processing technology | | | | | | | | | | | | | | | Thematic Area | No. of | | | | No. o | f Partic | ipants | | | | Grand | Total | | |-------------------------|---------|-----|-------|-----|-------|----------|--------|----|----|----|-------|-------|-----| | | Courses | | Other | • | | SC | | | ST | | | | | | | | M | F | T | M | F | T | M | F | T | M | F | T | | Fry and fingerling | | | | | | | | | | | | | | | rearing | | | | | | | | | | | | | | | Small scale processing | | | | | | | | | | | | | | | Post Harvest | 1 | 20 | 5 | 25 | 3 | 0 | 3 | 2 | 0 | 2 | 25 | 5 | 30 | | Technology | 1 | | | | | | | | | | | | | | Tailoring and Stitching | | | | | | | | | | | | | | | Rural Crafts | 1 | 0 | 0 | 0 | 0 | 25 | 25 | 0 | 0 | 0 | 0 | 25 | 25 | | Enterprise development | | | | | | | | | | | | | | | Others if any (ICT | | | | | | | | | | | | | | | application in | | | | | | | | | | | | | | | agriculture) | | | | | | | | | | | | | | | TOTAL | 22 | 230 | 66 | 296 | 202 | 117 | 319 | 22 | 8 | 30 | 454 | 191 | 645 | ## **Extension functionaries** | Thematic Area | No. of | | | | No. of | f Partic | ipants | | | | Grand | Total | | |---|---------|----|-------|----|--------|----------|--------|---|----|---|-------|-------|----| | | Courses | | Other | r | | SC | | | ST | | | | | | | | M | F | T | M | F | T | M | F | T | M | F | T | | Productivity enhancement in field crops | 2 | 45 | 0 | 45 | 10 | 0 | 10 | 5 | 0 | 5 | 60 | 0 | 60 | | Integrated Pest | | | | | | | | | | | | | | | Management | | | | | | | | | | | | | | | Integrated Nutrient management | | | | | | | | | | | | | | | Rejuvenation of old orchards | | | | | | | | | | | | | | | Value addition | | | | | | | | | | | | | | | Protected cultivation technology | | | | | | | | | | | | | | | Formation and | | | | | | | | | | | | | | | Management of SHGs | | | | | | | | | | | | | | | Group Dynamics and farmers organization | | | | | | | | | | | | | | | Information networking among farmers | | | | | | | | | | | | | | | Capacity building for ICT application | | | | | | | | | | | | | | | Care and maintenance
of farm machinery and
implements | | | | | | | | | | | | | | | WTO and IPR issues | | | | | | | | | | | | | | | Management in farm animals | | | | | | | | | | | | | | | Livestock feed and fodder production | | | | | | | | | | | | | | | Household food security | | | | | | | | | | | | | | |--|---|-----|---|-----|----|----|----|---|---|---|-----|----|-----| | Women and Child care | | | | | | | | | | | | | | | Low cost and nutrient efficient diet designing | | | | | | | | | | | | | | | Production and use of organic inputs | | | | | | | | | | | | | | | Gender mainstreaming through SHGs | | | | | | | | | | | | | | | Crop intensification | | | | | | | | | | | | | | | Others if any | 3 | 60 | 0 | 60 | 20 | 10 | 30 | 0 | 0 | 0 | 80 | 10 | 90 | | TOTAL | 5 | 105 | 0 | 105 | 30 | 10 | 40 | 5 | 0 | 5 | 140 | 10 | 150 | #### 4. Frontline demonstration to be conducted* ### FLD 1: - Crop: Jute - Thrust Area: Augmentation of productivity of field crops - Thematic Area: Improved production technology - **Season**: Pre Kharif 2020 - Farming Situation: Irrigated medium upland #### FLD 2: - Crop: Rice - Thrust Area: Augmentation of productivity of field crops - Thematic Area: Integrated crop management - **Season**: Kharif 2020 - Farming Situation: Irrigated medium upland #### FLD 3 (CFLD): - **Crop**: Mustard - Thrust Area: Augmentation of productivity of field crops - Thematic Area: Nutrient management - **Season**: Rabi 2020-21 - Farming Situation: Irrigated medium upland ### FLD 4 (CFLD): - Crop: Groundnut - Thrust Area: Augmentation of productivity of field crops - Thematic Area:
Secondary and micronutrient management - **Season**: Rabi-summer 2020-21 - Farming Situation: Irrigated medium upland ## FLD 5 (CFLD): Crop: Chickpea - Thrust Area: Augmentation of productivity of field crops - Thematic Area: Integrated nutrient management - **Season**: Rabi 2020-21 - Farming Situation: Irrigated medium upland ### FLD 6 (CFLD): - **Crop**: Lentil - Thrust Area: Augmentation of productivity of field crops - Thematic Area: Integrated nutrient management - **Season**: Rabi 2020-21 - Farming Situation: Irrigated medium upland ### FLD 7 (CFLD): - **Crop**: Greengram - Thrust Area: Augmentation of productivity of field crops - Thematic Area: Integrated nutrient management - **Season**: Rabi 2020-21 - Farming Situation: Irrigated medium upland ### FLD 8 (CFLD): - Crop: Sesame - Thrust Area: Augmentation of productivity of field crops - **Thematic Area**: Nutrient management in improved variety - **Season**: Rabi 2020-21 - Farming Situation: Irrigated medium upland #### **FLD 9**: - Crop: maize - **Thrust Area**: Augmentation of productivity of field crops - Thematic Area: Improved production technology - **Season**: Rabi 2020-21 - Farming Situation: Irrigated medium upland #### **FLD 10** - Crop: Tissue cultured Banana - Thrust Area: Production Technology - Thematic Area: Cultivation of Fruit - **Season**: Kharif - Farming Situation: Irrigated Medium/ upland #### **FLD 11** - Crop: Onion - Thrust Area: Yield increment - Thematic Area: Cultivation of Vegetable - Season: Kharif - Farming Situation: Irrigated Medium/ upland #### **FLD 12** • Crop: Marigold Thrust Area: Yield increment and quality of flower Thematic Area: Nutrient management of marigold • Season: Rabi • Farming Situation: Irrigated Medium/ upland #### **FLD 13:** • Crop: Oyster Mushroom • Thrust Area: Augmentation of productivity • Thematic Area: Improved production technology • Season: Rabi, 2020 (Yet to start) • Farming Situation: Conventional method ### **FLD 14:** Crop: Brinjal Thrust Area: Augmentation of productivity Thematic Area: Integrated Pest management Season: Rabi Farming Situation: Irrigated medium/ upland | | | | | Paramete | Cost of C | ultivatio | n (Rs.) | No. | of fa | armei | rs / d | emo | nstra | tion | | | |---------------|---|---------------------------------------|---|---|---------------------------------------|-----------|-----------|-----|----------|-------|--------|---------|-------|------|----|-----| | | | Propo | Tashualas | r (Data) | | | | SC | <u> </u> | ST | | Otl | | Tota | al | | | Sl
N
o. | Crop & variety / Enterpr ises | sed
Area
(ha)/
Unit
(No.) | Technolog
y package
for
demonstra
tion | in relation
to
technolog
y
demonstr
ated | Name
of
Inputs | Demo | Loca
l | M | F | М | F | M | F | М | F | Т | 1 | Jute; JRO
204 | 10 | Seed
treatment+
Use of seed
drill/cycle
weeder+
60:30:30
NPK+retting
with CRIJAF
SONA | Plant height,
base
diameter,
yield | Seed | 63000 | 66000 | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | 2 | Rice; MTU
7029 | 10 | 16-18 day old
seedling +
10'x10'
spacing +
chemical
weeding +
80:40:40:20
NPKS | No. of
tiller/hil, test
weight, yield | Seed,
Fertilizers | 48000 | 47000 | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | 3 | Mustard;
JD
6/Keshari | 60 | Soil test based
N, P, K + 30
kg S/ha+ two
foliar spray of
boron along
with
micronutrient
mixture
(Aquacal) | No. of
pods/plant,
test weight,
oil content
yield | Seed,
Sulfur,
boron | 30000 | 29000 | 30 | 15 | 0 | 0 | 95 | 10 | 125 | 25 | 150 | | 4 | Rabi
Groundnut
; TG51 | 80 | Improved
variety with
secondary and
micronutrient
management | No. of pods/plant, yield | Seed of
TG 51 | 42000 | 40000 | 20 | 10 | 0 | 0 | 16
0 | 10 | 180 | 20 | 200 | | 5 | Chickpea;
JAKI 9218/
any latest
variety
suited to
location | 10 | Treatment of seed with rhizobium; 15:40:20 N:P:K and 30 kg S/ha; Soil application of ZnSO4 @ 10 kg/ha; 2 foliar spray of boron @ pre and post flowering | No. of
pods/plant,
yield | Seed,
sulfur,
micronutri
ent | 29000 | 27000 | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | 6 | Lentil;
WBL 77 | 40 | Treatment of seed with rhizobium; 15:40:20 N:P:K and 30 kg S/ha; Soil application of ZnSO4 @ 10 kg/ha; 2 foliar spray of boron @ pre and post flowering | No. of
pods/plant,
yield | Seed,
sulfur,
micronutri
ent | 26000 | 25000 | 10 | 10 | 0 | 0 | 20 | 0 | 70 | 10 | 100 | | 7 | Greengram | 10 | Treatment of | No. of | Seed, | 30000 | 32000 | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | | ; IPM 02-03 | | seed with | pods/plant, | sulfur, | |] | | | | | | | | | | | 8 | Sesame;
SML 668 | 30 | rhizobium;
15:40:20 N:P:K
and 30 kg
S/ha; 2 foliar
spray of boron
@ pre and
post flowering
Improved
variety with
secondary and
micronutrient
management | No. of pods/plant, yield | seed,
sulfur,
micronutri
ent | 35000 | 34000 | 10 | 05 | 0 | 0 | 20 | 0 | 50 | 10 | 75 | |-----|--|---------|--|--|---|--------|--|----|-----|---|---|----|---|----|-----|----| | 9 | Maize; Pro
311 | 10 | Zero tillage
with with 150-
180 kg N, 70-
80 kg P ₂ O ₅ ,
70-80 kg K ₂ O
and 25 kg
ZnSO ₄ ha ⁻¹ | Cob length,
1000 grain
wt, yield | Seed,
ZnSO ₄ | 48000 | 46000 | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | 0. | Mushroo
m Var.
Oyster | 20 nos. | Improved production technology | Yield, B:
C ratio | Mushro
om
spawn,
poly
packets,
chemica
ls | 5490 | 5000 | 10 | 1 0 | 0 | 0 | 0 | 0 | 10 | 1 0 | 20 | | 1 1 | Tissue
cultured
Banana
Var.
Grand
Naine | 2 | Tissue
cultured
plantlets
(Var.
Grand
Naine) | Yield, B:C ratio | Tissue
cultured
plantlet
s | 160000 | 1350
00 | 3 | - | 2 | - | 10 | - | 15 | - | 15 | | 1 2 | Onion,
Var
Agrifoun
d Dark
Red | 3 | Variety
(Var
Agrifound
Dark Red) | Yield, B:C ratio | Seeds | 105000 | Repl
acem
ent
of
upla
nd
and
medi
um
land
padd | 4 | 2 | 2 | - | 14 | 2 | 16 | 4 | 20 | | 1 3 | Marigol
d | 2 | Chellated
zinc/ Zn
EDTA | Yield,
Visible
appearanc
e of
flower,
B:C ratio | Zn
EDTA | 75000 | 6500
0 | 6 | 5 | - | - | 4 | - | 10 | 5 | 15 | | 1 4 | Brinjal
Var.
Local | 1 ha | Integrated pest management on Leucinodes orbonalis 1. Install pheromone traps 10/acre for mass trapping at | Yield, B:C ratio | Pheromo
ne trap
10/ acre
for mass
trapping
and
spray
azadirac
h
tin
0.03% | 48000 | 4500
0 | 15 | 5 | | | | | 15 | 5 | 20 | | ı | | | | | | | | | $\overline{}$ | |---|-------------|---|----------|--|--|--|--|--|---------------| | | 10 m | | neem oil | | | | | | | | | distance | | | | | | | | n | | | from 20 | | | | | | | | | | | DAT, the | | | | | | | | i | | | pheromone | | | | | | | | | | | septa shoul | d | | | | | | | | | | be changed | | | | | | | | i | | | at regular | | | | | | | | i | | | interval. | | | | | | | | | | | 2. Spray | | | | | | | | i | | | azadirachti | n | | | | | | | | | | 0.03% (300 |) | | | | | | | | | | ppm) neem | | | | | | | | i | | | oil based | | | | | | | | | | | WSP @ | | | | | | | | | | | 1000-2000 | | | | | | | | i | | | ml in 200- | | | | | | | | | | | 4001 of | | | | | | | | | | | water/acre | | | | | | | | | # **Extension and Training activities under FLD:** | Activity | Title of Activity | No. | Clientele | Duration | Venue | | ľ | No. | of | Par | tici | pant | s | | |--------------|--|-----|-----------|------------------|--------|-----|----|-----|----|-----|------|------------|-----|-----| | | | | | | On/Off | S | С | S | Г | Oth | ıer | 7 | ota | 1 | | | | | | | | M | F | M | F | M | F | M | F | T | | Training | Improved production | 1 | PF | 1 day | Off | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | | technology of jute | | | | | | | | | | | | | | | | ICM of rice | 1 | PF | 1 day | Off | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | | Improved production technology of rabi groundnut | 2 | PF | 1 day | Off | 15 | 0 | 0 | 0 | | | <i>7</i> 5 | 05 | | | | Nutrient management of mustard | 2 | PF | 1 day | Off | 20 | 10 | 0 | 0 | 50 | 10 | 70 | 20 | 90 | | | INM on chickpea | 1 | PF | 1 day | Off | 20 | 10 | 0 | 0 | 20 | 0 | 40 | 10 | 50 | | | INM on lentil | 1 | PF | 1 day | Off | 20 | 10 | 0 | 0 | 20 | 0 | 40 | 10 | 50 | | | Nutrient management of sesame | 1 | PF | 1 day | Off | 20 | 10 | 0 | 0 | 20 | 0 | 40 | 10 | 50 | | | INM on greengram | 1 | PF | 1 day | Off | 20 | 10 | 0 | 0 | 20 | 0 | 40 | 10 | 50 | | | ICM of rabi maize | 1 | PF | 1 day | Off | 20 | 10 | 0 | 0 | 20 | 0 | 40 | 10 | 50 | | | Improved cultivation of tissue culture banana | 1 | PF | 1 day | Off | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | | Improved production technology of kharif onion | 1 | PF | 1 day | Off | 10 | 0 | 0 | 0 | 15 | 0 | 25 | 0 | 25 | | | | | | | | | | | | | | | | | | Field visits | Field visit | 20 | PF | Half day
each | Off | 190 | 65 | 0 | 0 | 310 | 10 | 500 | 75 | 575 | | Field day | Feld day on all crops | 12 | PF
| Half day
each | Off | 228 | 78 | 0 | 0 | 372 | 12 | 600 | 90 | 690 | | | Field day on Banana,
Onion | 3 | 90 | 3 | Off | 15 | 0 | 15 | 0 | | 0 | 90 | 0 | 90 | ^{*} Repeat the above tables and information in Point no. 4 for EACH FLD being proposed. # 5. a) Seed and planting material production by utilization of instructional farm (Crops / Enterprises) | Name of the | • | • | | Details of Production | | | | | | | |----------------------|--|------------------|---------|-----------------------|--------------------------------------|----------------------|--------------------------------------|---------------------------------|--|--| | Crop /
Enterprise | Туре | Fromto | | Type of Produce | Expected
Production
(quintals) | Cost of inputs (Rs.) | Expected
Gross
income
(Rs.) | Expected
Net Income
(Rs.) | | | | Rice | MTU 7029 | June - Dec, 2020 | 4 | Foundation seed | 210 | 400000 | 1000000 | 600000 | | | | Rice | MTU
1010/any
other new
variety | June – Dec, 2020 | 0.4 | Foundation seed | 20 | 40000 | 100000 | 60000 | | | | Rice | Rajendra
Masuri any
other new
variety | June – Dec, 2020 | 0.4 | Foundation seed | 20 | 40000 | 100000 | 60000 | | | | Brinjal | Bhangar
Selection | July to Sept | 0.01 ha | Seedlings | 25000 no | 10000 | 20000 | 10000 | | | | Fruit saplings | Guava, Citrus | July to Sept | - | Saplings | 1000 | 5000 | 40000 | 35000 | | | | | | | | | | | | | | | # b) Village Seed Production Programme | Name of | Variety / | Period | Area | No. of | Details of Production | | | | | |-----------------------|-----------|---------------------|-------|---------|-----------------------|------------------------|----------------------|-----------------------------|---------------------------| | the Crop / Enterprise | Туре | Fromto | (ha.) | farmers | Type of
Produce | Expected Production(q) | Cost of inputs (Rs.) | Expected Gross income (Rs.) | Expected Net Income (Rs.) | | Rice | MTU 7029 | June – Dec,
2020 | 100 | 250 | TL seed | 4500 | 4800000 | 9000000 | 4200000 | # 6. Extension Activities | Sl. | | No. of | | | Farmo | ers | Exto | ension Offi | cials | | Total | | |-----|----------------------------|--------------------------------|-------------|-----|-------|---------------------------|------|-------------|-------|------|--------|-------| | No. | Activities/ Sub-activities | activit
ies
propo
sed | M | F | Т | SC/ ST
(% of
total) | Male | Female | Total | Male | Female | Total | | 1. | Field Day | 12 | 6
0
0 | 9 | 690 | 30 | 4 | 0 | 4 | 604 | 90 | 694 | | 2. | Kisan Mela | | | | | | | | | | | | | 3. | Kisan Ghosthi | | | | | | | | | | | | | 4. | Exhibition | | | | | | | | | | | | | 5. | Film Show | | | | | | | | | | | | | 6. | Method Demonstrations | 2 | 3 0 | 4 | 34 | 40 | | | | 30 | 4 | 34 | | 7. | Farmers Seminar | | | | | | | | | | | | | 8. | Workshop | | | | | | | | | | | | | 9. | Group meetings | 4 | 1
0 | 3 0 | 130 | 60 | | | | 100 | 30 | 130 | | | | | 0 | | | | | | | | | | |-----|---|----|------------------|------------------|-----------|-----|----|----|-----|-----------|------|-------| | 10. | Lectures delivered as resource persons | 8 | 7 0 | 1
0 | 80 | 30 | 90 | 30 | 120 | 160 | 40 | 200 | | 11. | Advisory Services | 20 | 5
0
0
0 | 9
0
0
0 | 590
00 | 30 | 0 | 0 | 0 | 5000
0 | 9000 | 59000 | | 12. | Scientific visit to farmers field | 12 | 3
0
0 | 5
0 | 350 | 30 | 0 | 0 | 0 | 300 | 50 | 350 | | 13. | Farmers visit to KVK | | | | | | | | | | | | | 14. | Diagnostic visits | 10 | 5
4 | 1 3 | 67 | 21 | 0 | 0 | 0 | 54 | 13 | 67 | | 15. | Exposure visits | | | | | | | | | | | | | 16. | Ex-trainees Sammelan | | | | | | | | | | | | | 17. | Soil health Camp | 6 | 2
7
3 | 9 | 282 | 15 | 10 | 3 | 13 | 283 | 12 | 295 | | 18. | Animal Health Camp | | | | | | | | | | | | | 19. | Agri mobile clinic | | | | | | | | | | | | | 20. | Soil test campaigns | 6 | 1
0
0 | 1 2 | 112 | 24 | 0 | 0 | 0 | 100 | 12 | 112 | | 21. | Farm Science Club Conveners meet | | | | | | | | | | | | | 22. | Self Help Group Conveners meetings | | | | | | | | | | | | | 23. | Mahila Mandals Conveners meetings | | | | | | | | | | | | | 24. | Celebration of important days (specify) | 1 | 4
0 | 1
0 | 50 | 100 | 0 | 0 | 0 | 40 | 10 | 50 | | 25. | Sankalp Se Siddhi | | | | | | | | | | | | | 26. | Swatchta Hi Sewa | | | | | | | | | | | | | 27. | Mahila Kisan Diwas | | | | | | | | | | | | | 28. | Any Other (Specify) | | | | | | | | | | | | | | Total | | | | | | | | | | | | # 7. Revolving Fund (in Rs.) | Opening balance of 2019-2020 (As on 01.04.2019) | Amount proposed to be invested during 2019-2020 | Expected Return | |---|---|-----------------| | | | | # 8. Expected fund from other sources and its proposed utilization | Project | Source | Amount to be received (Rs. in | |---------|---------------------|-------------------------------| | _ | | lakh) | | DAESI | SAMETI, Narendrapur | 740000 | | | | | | | | | ## 9. On-farm trials to be conducted* ## OFT 1 (2nd year): | Sl | Particulars | Details | |-----|--------------------------|--| | no. | | | | 1 | Season | Rabi 2020-21 | | 2 | Title of the OFT | Assessment of different remediation measures for cold stress of | | | | rice seedling during rabi season under medium upland situation of | | | | Burdwan district | | 3 | Thematic Area | Integrated crop management | | 4 | Problem Diagnosed | Mortality of paddy seedling in seedbed in rabi season | | 5 | Important Cause | Undeveloped root system due to cold injury leading to no-uptake | | | | of nutrients | | 6 | Production System | Rice based production system | | 7 | Micro farming System | Conventional rice production in medium upland situation | | 8 | Technology for Testing | Application of growth promoter and management practice | | 9 | Existing Practice | Carbendazim/ Mancozeb spray | | 10 | Hypothesis | Application of growth promoter or amendment of nutrient from | | | | extraneous sources will meet the nutritional requirement of | | | | seedling | | 11 | Objective(s) | 1. Resist mortality of paddy seedling in rabi nursery | | | | 2. Attaining robust seedling in fewer days for transplant | | 12 | Treatments: | Farmers Practice (FP): Carbendazim/ Mancozeb spray | | | | Technology option-I (TO-I): Spraying of Triconanol @ 100 ppm 2 | | | | times at 3 day interval when temperature falls below 12°C. | | | | Technology option-II (TO-II): Spraying of micronutrient mixture | | | | (Fe, Mn, B, Mg and Zn) @ 750 ml/ha (commercial formulation) 2 | | | | times at 3 day interval when temperature falls below 12°C. | | | | Technology option-III (TO-III): Hot water treatment in seedbed in | | | | early morning | | 13 | Critical Inputs | Tricontanol, Micronutrient mixture | | 14 | Unit Size | 0.007 ha | | 15 | No of Replications | 10 | | 16 | Unit Cost | Rs. 500 | | 17 | Total Cost | Rs. 5000 | |----|----------------------|---| | 18 | Monitoring Indicator | Mortality percentage, seedling height/30 DAS, Productivity gain | | | | from enriched seedlings | | 19 | Source of Technology | IRRI, Philippines; BCKV, Mohanpur | ## OFT 2: | S1 | Particulars | Details | |-----|-------------------------------|---| | no. | | | | 1 | Season | Kharif 2020 | | 2 | Title of the OFT | Assessment of efficacy of different herbicides on weed | | | | control of transplanted rice during kharif season under | | | | medium upland situation of Burdwan district | | 3 | Thematic Area | Weed management | | 4 | Problem Diagnosed | Infestation of weed leading to reduction in yield | | 5 | Important Cause | Improper land preparation coupled with inefficient weed control | | 6 | Production System | Rice based production system | | 7 | Micro farming System | Transplanted rice farming under medium upland situation | | 8 | Technology for Testing | Application of selective herbicides | | 9 | Existing Practice | Non application on inefficient application of herbicide | | 10 | Hypothesis | Application of improved herbicide for efficient control of | | | | weed should lead to augmented productivity | | 11 | Objective(s) | Increasing productivity of paddy | | | | | | 12 | Treatments: | Farmers Practice (FP): Application of butachlor 50% EC @ | | | | 1.25 kg. a.i./ha | | | | Technology option-I (TO-I): Application of pyrazosulfuron | | | | ethyl 10 % WP @ 160 g a.i./ ha within 4 DAT | | | | Technology option-II (TO-II): Application of Bispyribac | | | | sodium 10% SC @25 g a.i./ ha 15-20 DAT. | | | | Technology option-III (TO-III): Application of penoxulum | | 13 | Critical Innuts | 21.7 % SC @ 20 g a.i./ ha at 15-20 DAT | | 13 | Critical Inputs | pyrazosulfuron ethyl 10 % WP, Bispyribac sodium 10% SC, penoxulum 21.7 % SC | | 14 | Unit Size | 0.13 ha | | 15 | No of Replications | 6 | | 16 | Unit Cost | Rs. 1500 | | 17 | Total Cost | Rs. 9000 | | 18 | Monitoring Indicator | Yield, weed density | | 19 | Source of Technology | BCKV, Mohanpur | | | - Source of Technology | DOINT, INTOINITE MI | ## **OFT 3:** | OII | . | | |-----|-------------------|---| | Sl | Particulars | Details | | no. | | | | 1 | Season | Rabi | | 2 | Title of the OFT | Varietal trial of Hybrid tomato | | 3 | Thematic Area | Production technology | | 4 | Problem diagnosed | Abhilash is being cultivated for several years; there is a potential yiel | | | | gap of tomato in our district in comparison to southern part of the | | | | country. | | 5 | Important Cause |
Lower yield due to high infestation of leaf curl and blight | | 6 | Production system | Paddy- vegetable cropping system | |----|------------------------------------|--| | 7 | Micro farming system | Irrigated Medium Land | | 8 | Technology for Testing | Newly released Hybrid varieties | | 9 | Existing Practice | Abhilash | | 10 | Hypothesis | Newly released multi disease resistant varieties may improve yield | | 11 | Objective(s) | Significant yield improvement as well as increase in income | | 12 | Treatments: | Farmers Practice (FP): Abhilash | | | | Technology option-I (TO-I): Arka Samrat | | | | Technology option-II (TO-II): Arka Rakshak | | 13 | Critical Inputs | Seeds | | 14 | Unit Size | 0.05 ha | | 15 | No of Replications | 7 | | 16 | Unit Cost | 2000 | | 17 | Total Cost | Rs.14000 | | 18 | Monitoring Indicator | Yeld, disease infestation, cost benefit ratio | | 19 | Source of Technology (ICAR/ | ICAR IIHR | | | AICRP/ SAU/ Other, please specify) | | ## **OFT 4:** | Sl | Particulars | Details | |-----|------------------------------------|--| | no. | | | | 1 | Season | Rabi | | 2 | Title of the OFT | Assessment of different techniques of vegetable seedling transplanting on the rate of seedling mortality and economic viability of vegetable cultivation | | 3 | Thematic Area | Vegetable cultivation | | 4 | Problem diagnosed | Vegetable seedlings are grown in raised beds and they are manually uprooted and transplanted in the main field leading to a significant percentage of seedling mortality. At the same time manual transplanting is a labour intensive job. | | 5 | Important Cause | Significant percentage of seedling mortality and labour intensive job. | | 6 | Production system | Vegetable- potato cropping system | | 7 | Micro farming system | Irrigated Medium Land | | 8 | Technology for Testing | Vegetable seedlings transplanter and pluck tray/potray | | 9 | Existing Practice | Conventional raising of seedlings in beds and manual transplanting | | 10 | Hypothesis | Seedlings raised in pluck tray and transplanted by transplanter will reduce the seedling mortality as well as reduce requirement of labour. | | 11 | Objective(s) | Significant reduction of seedling mortality as well as reduction of requirement of labour. | | 12 | Treatments: | Farmers Practice (FP): Raising of seedlings in raised beds and manual transplanting Technology option-I (TO-I): Raising of seedlings in pluck trays and manual transplanting Technology option-II (TO-II): Raising of seedlings in pluck trays and transplanting with the help of transplanter | | 13 | Critical Inputs | Pluck trays and transplanter | | 14 | Unit Size | 0.05 ha | | 15 | No of Replications | 10 | | 16 | Unit Cost | 3000 | | 17 | Total Cost | 30000 | | 18 | Monitoring Indicator | Percentage of seedling mortality, labour requirement and cost benefit ratio | | 19 | Source of Technology (ICAR/ | ICAR-IIHR | | | AICRP/ SAU/ Other, please specify) | | # 10. List of Projects to be implemented by funding from other sources (other than KVK fund) | Sl. No. | Name of the project | Fund expected (Rs.) | |---------|---|---------------------| | 1 | Cereal System Initiative for South Asia | 160000 | | 2 | DAESI | 740000 | | | | | | | | | | | | | ^{*}Repeat the same format for EACH OFT being proposed. ### 11. No. of success stories proposed to be developed with their tentative titles - Entrepreneurship development with seed production of groundnut - Sustainable production and income augmentation from mustard cultivation - Seed production of paddy in seed village mode ### 12. Scientific Advisory Committee | Date of SAC meeting held during 2018-19 | Proposed date during 2019-2020 | | | | | |---|--------------------------------|--|--|--|--| | | | | | | | ### 13. Soil and water testing | Details | No. of Samples | No. of Farmers | | | | | | | | | No. of Villages | No. of SHC
distributed | |------------------------|-------------------|----------------|---|---|---|----|---|-----|---|-----|-----------------|---------------------------| | | SC ST Other Total | | | | | | | | | | | | | | | M | F | M | F | M | F | M | F | T | | | | Soil Samples | 100 | 10 | 0 | 0 | 0 | 90 | 0 | 100 | 0 | 100 | 10 | 500 | | Water Samples | | | | | | | | | | | | | | Other (Please specify) | | | | | | | | | | | | | | Total | | | | | | | | | | | | | ## 14. Fund requirement and expenditure (Rs.)* | Heads | Expenditure (last year) (Rs.)
up to 31.03.2019 | Expected fund requirement (Rs.) | |-------|---|---------------------------------| Total | | | ^{*} Any additional requirement may be suitably justified. 15. Every KVK should bring a brief write-up supported by quality photographs about the technology having wide acceptability among the farming community of the district with factual data